DES APPLICATIONS GÉNÉRATRICES DESNOMBRES PREMIERS ET CINQ PREUVES DE L'HYPOTHÈSE DE RIEMANN

M. Sghiar

Received August 23, 2015; Re-Revised September 21, 2015

We prove that there exists one application $\psi\left(\psi^{-}, \psi^{+}\right)$on \mathbb{R}^{2} such that $\mathcal{P}=\{ \pm 2, \pm 3\} \bigcup 6 \times \mathcal{F}^{-}+1 \bigcup 6 \times \mathcal{F}^{+}-1$, where \mathcal{P} is the set of relatively prime numbers, $\quad \mathcal{F}^{-}=\mathbb{Z} \cap\left(\psi^{+}\left(\mathbb{Z}^{*} \times \mathbb{Q} \backslash \mathbb{Z}\right) \backslash \psi^{+}\left(\mathbb{Z}^{*} \times \mathbb{Z}^{*}\right)\right)$ and $\mathcal{F}^{+}=\mathbb{Z} \cap\left(\psi^{-}\left(\mathbb{Z}^{*} \times \mathbb{Q} \backslash \mathbb{Z}\right) \backslash \psi^{-}\left(\mathbb{Z}^{*} \times \mathbb{Z}^{*}\right)\right)$. And we will give an algorithm that allows both to generate prime numbers and confirm that \mathcal{P} is indeed determined by the mapping $\psi\left(\psi^{-}, \psi^{+}\right)$that we will apply in some proofs of the Riemann hypothesis.

Keywords and phrases: prime numbers, Riemann hypothesis.

Pioneer Journal of

 Algebra, Number Theory and its Applications

